


## Sodium/Potassium-Transporting ATPase Subunit Alpha-3 (ATP1A3) Antibody

Catalogue No.:abx031342



The protein encoded by this gene belongs to the family of P-type cation transport ATPases, and to the subfamily of Na+/K+ ATPases. Na+/K+ ATPase is an integral membrane protein responsible for establishing and maintaining the electrochemical gradients of Na and K ions across the plasma membrane. These gradients are essential for osmoregulation, for sodium-coupled transport of a variety of organic and inorganic molecules, and for electrical excitability of nerve and muscle. This enzyme is composed of two subunits, a large catalytic subunit (alpha) and a smaller glycoprotein subunit (beta). The catalytic subunit of Na+/K+ ATPase is encoded by multiple genes. This gene encodes an alpha 3 subunit.

| Target:               | Sodium/Potassium-Transporting ATPase Subunit Alpha-3 (ATP1A3)                                         |
|-----------------------|-------------------------------------------------------------------------------------------------------|
| Clonality:            | Polyclonal                                                                                            |
| Reactivity:           | Human                                                                                                 |
| Tested Applications:  | ELISA, WB                                                                                             |
| Host:                 | Rabbit                                                                                                |
| Recommended dilutions | : WB: 1/1000. Optimal dilutions/concentrations should be determined by the end user.                  |
| Conjugation:          | Unconjugated                                                                                          |
| Immunogen:            | KLH-conjugated synthetic peptide between 805-833 amino acids from the Central region of human ATP1A3. |
| Isotype:              | lgG                                                                                                   |
| Form:                 | Liquid                                                                                                |
| Purification:         | Purified through a protein A column, followed by peptide affinity purification.                       |
| Storage:              | Aliquot and store at -20°C. Avoid repeated freeze/thaw cycles.                                        |



| UniProt Primary AC: | P13637 ( <u>UniProt</u> , <u>ExPASy</u> )                                                                                                        |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| KEGG:               | hsa:478                                                                                                                                          |
| String:             | <u>9606.ENSP00000444688</u>                                                                                                                      |
| Molecular Weight:   | Calculated MW: 112 kDa                                                                                                                           |
| Buffer:             | PBS containing 0.09% sodium azide.                                                                                                               |
| Specificity:        | Predicted to react with Mouse, Rat and Chicken ATP1A3.                                                                                           |
| Note:               | THIS PRODUCT IS FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC,<br>THERAPEUTIC OR COSMETIC PROCEDURES. NOT FOR HUMAN OR ANIMAL<br>CONSUMPTION. |
|                     |                                                                                                                                                  |