Datasheet

Version: 2.0.0 Revision date: 15 Jun 2025

Human Complement Receptor 2 / CD21 (CR2) CLIA Kit

Catalogue No.:abx196558

Human CR2 Chemiluminescent Immunoassay (CLIA) Kit is a Chemiluminescent Immunoassay (CLIA) Kit for use with Serum, plasma, tissue homogenates and other biological fluids.

Target: Complement Receptor 2 / CD21 (CR2)

Reactivity: Human

Tested Applications: CLIA

Recommended dilutions: Optimal dilutions/concentrations should be determined by the end user.

Storage: Shipped at 4 °C. Upon receipt, store the kit according to the storage instruction in the kit's manual.

Validity: The validity for this kit is at least 6 months. Up to 12 months validity can be provided on request.

Stability: The stability of the kit is determined by the rate of activity loss. The loss rate is less than 5% within

the expiration date under appropriate storage conditions. To minimize performance fluctuations, operation procedures and lab conditions should be strictly controlled. It is also strongly suggested

that the whole assay is performed by the same user throughout.

UniProt Primary AC: P20023 (UniProt, ExPASy)

GeneID: <u>1380</u>

OMIM: 120650

HGNC: 2336

Ensembl: ENSG00000117322

Test Range: 78 pg/ml - 5000 pg/ml

Sensitivity: < 31 pg/ml

Standard Form: Lyophilized

Detection Method: Chemiluminescent

Assay Type: Sandwich

Datasheet

Version: 2.0.0 Revision date: 15 Jun 2025

Assay Data: Quantitative

Sample Type: Serum, plasma, tissue homogenates and other biological fluids.

Target Type: Antigen

Note: THIS PRODUCT IS FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR

THERAPEUTIC PROCEDURES.

The range and sensitivity is subject to change. Please contact us for the latest product information. For accurate results, sample concentrations must be diluted to mid-range of the kit. If you require a

specific range, please contact us in advance or write your request in your order comments. Please note that our kits are optimised for detection of native samples, rather than recombinant proteins. We are unable to guarantee detection of recombinant proteins, as they may have

different sequences or tertiary structures to the native prote<mark>in</mark>

