Datasheet

Version: 3.0.0 Revision date: 21 Oct 2025

Low Sample Volume Mouse Fibrinogen Gamma Chain (FGG) ELISA Kit

Catalogue No.:abx585670

Low Sample Volume Mouse Fibrinogen Gamma Chain (FGG) ELISA Kit is an ELISA Kit for the in vitro quantitative measurement of Mouse Fibrinogen Gamma Chain (FGG) concentrations in Plasma. This kit is specifically designed for the detection of low-volume samples.

Target: Fibrinogen Gamma Chain (FGG)

Research Area: Hematology

Reactivity: Mouse

Tested Applications: ELISA

Recommended dilutions: Optimal dilutions/concentrations should be determined by the end user.

Storage: Shipped at 4°C. Upon receipt, store the kit according to the storage instruction in the kit's manual.

Validity: The validity for this kit is at least 6 months. Up to 12 months validity can be provided on request.

Stability: The stability of the kit is determined by the rate of activity loss. The loss rate is less than 5% within

the expiration date under appropriate storage conditions. To minimize performance fluctuations, operation procedures and lab conditions should be strictly controlled. It is also strongly suggested

that the whole assay is performed by the same user throughout.

UniProt Primary AC: Q8VCM7 (UniProt, ExPASy)

Gene Symbol: FGG

KEGG: mmu:99571

String: <u>10090.ENSMUSP00000037018</u>

Test Range: 31.2 ng/ml - 2000 ng/ml

Sensitivity: < 13.4 ng/ml

Detection Method: Colorimetric

Assay Type: Sandwich

Assay Data: Quantitative

Datasheet

Version: 3.0.0 Revision date: 21 Oct 2025

Sample Type:

Plasma.

Note: THIS PRODUCT IS FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR

THERAPEUTIC PROCEDURES.

The range and sensitivity is subject to change. Please contact us for the latest product information. For accurate results, sample concentrations must be diluted to mid-range of the kit. If you require a specific range, please contact us in advance or write your request in your order comments. Please note that our kits are optimised for detection of native samples, rather than recombinant proteins. We are unable to guarantee detection of recombinant proteins, as they may have different sequences or tertiary structures to the native protein.