

Antibody-Based Hot-Start Taq DNA Polymerase

Catalogue No.:abx461039

Abbexa's Antibody-Based Hot-Start Taq DNA Polymerase is a high performance enzyme designed for fast and highly-specific PCR. Its antibody-based hot-start property allows reaction set-up at room temperature, eliminating all non-specific priming and the formation of primer-dimers. A 5X Reaction Buffer is also included, containing a proprietary mix of dNTPs, MgCl₂ and enhancers at optimal concentrations.

Contents:					\mathbf{A}			
Component	250 U	500 U	2500 U					
Taq DNA Polymeras	se 50 µl	200 µl	2 × 250 µl					
5X Reaction Buffer	2 × l ml	8 × 1 ml	14 × 1.5 ml					
Target:	Antibody-Based Hot-Start Taq DNA Polymerase							
Tested Applications: PCR								
Form:	Liquid		0					
Storage:	Store all components at -20 °C. It is not recommended to store the enzyme at -80 °C as ice crystals may form							
	on the active site, which can affect the enzyme activity. Avoid repeated freeze/thaw cycles.							
Validity:	Up to 12 months.							
Buffer:	5X Reaction Buffer: 5 mM dNTPs, 15 mM MgCl ₂ , stabilizers and enhancers.							
Biological Activity:	One unit is defined as the amount of enzyme that incorporates 10 nmol of dNTPs into acid-insoluble form in 30 minutes at 72 °C.							
Concentration:	5 U/µl							
Note:				DT FOR USE IN DIAGNOSTIG	C, THERAPEUTIC OR			

Directions for use:	Reaction Compon	Reaction Components:							
	Component			Volume					
	Template Primers (20 μΜ)		Varial 1 µl	Variable, as required					
	5X Reaction Buffe	r	10 µl						
	Antibody-Based Hot-Start Taq DNA Polymerase1 µl								
	Water Total Volume			Variable, up to 50 μl 50 μl					
	Colony PCR:		50 µi						
		tibody-Based Hot-Start Taq DNA Polymerase can be used for amplification of plasmid DNA directly from							
		iquid cultures or from colonies on agar plates.							
		Culture: Up to 8 µl of overnight culture can be added directly to the final reaction mix. s on Agar Plates: Use a sterile tip to swab the colony and resuspend directly in the 50 µl reaction							
	• Colonies on Ag mix.	ar Plates: Use a si	terlie tip to swab	b the colorry and resuspend directly in the 50 prireaction					
	Thermal Cycling Conditions (Multiplex PCR of fragments up to 1 kb):								
	Step	Number of Cycle	sTemperature	Time per Cycle					
	Initial Denaturation	n1 cycle	95 °C	1 min					
	Denaturation		95 °C ≥ 55 °C	15 seconds					
	Annealing	25-35 cycles	(primer depende	ent) ¹⁵ seconds					
	Extension		72 °C	90 seconds					
	• The 5X Reaction	Buffer contains 5	mM dNTPs 15 m	M MaCL stabilizer	s and enhancers. The concentration of				
	• The 5X Reaction Buffer contains 5 mM dNTPs, 15 mM MgCl ₂ , stabilizers and enhancers. The concentration of each component has been extensively optimized and should only be adjusted if necessary. Additional dNTPs								
		and PCR enhancers such as Betaine are not recommended and may lead to PCR failure.							
	 Forward and reverse primers are generally used at a final concentration of 0.2-0.6 μM each. It is recommended to start with 0.4 μM as the final concentration (i.e. 20 pmol of each primer per 50 μl react 								
	volume). A primer concentration that is too high can reduce the specificity of priming, resulting in non-specific								
	products. Primers should have a melting temperature (T _m) of approximately 60 °C. • The amount of template in the reaction depends mainly on the type of DNA used. For templates with low								
	structural complexity, such as plasmid DNA, it is recommended to use 50 pg - 10 ng DNA per 50 µl reaction								
		olume. For eukaryotic genomic DNA, it is recommended to use a starting amount of 100 ng DNA per 50 µl							
		eaction, this can be varied between 5 ng - 500 ng. It is important to avoid using templates re-suspended in							
	 EDTA-containing solutions (e.g. TE buffer) since EDTA chelates free Mg²⁺. The initial denaturation step at 95 °C for 1 minute is recommended to fully melt non-complex templates su as plasmid DNA or cDNA. Complex templates such as eukaryotic genomic DNA may require up to 3 min to completely melt. 								
	 It is recommended 		•	enaturation steps at 95 °C for 15 seconds each cycle, which is					
		uitable for GC-rich templates. For low GC content (40-45%) templates, the denaturation time can be							
	decreased to 5 se								
	 The optimal annealing temperature is primer dependent and is usually 2-5 °C below the lower T_m of the pai is recommended to start with an annealing temperature of 55 °C and, if necessary, run a temperature gradie to determine the optimal annealing temperature. The annealing time may be reduced to 5 seconds dependir 								
	on the reaction.								
	 The optimal extension time is dependent on the length of the amplicon and the complexity of the template. An extension time of 10 seconds is sufficient for low complexity templates such as plasmid DNA. Longer extension times are recommended for fragments larger than 1 kb (e.g. eukaryotic DNA). The extension time may be increased up to 30 seconds/kb to find the fastest optimal condition. Multiplex PCR requires a longer extension 								
	step; it is recommended to start with a minimum of 90 seconds and increase if required.								
	-	-			dent on the system used. Each				
	parameter needs to be adjusted by the end user and some optimization may be required.								